Skip to main content

Robots

                                                    Robots



A
 robot is a machine—especially one programmable by a computer— capable of carrying out a complex series of actions automatically. Robots can be guided by an external control device or the control may be embedded within. Robots may be constructed on the lines of human form, but most robots are machines designed to perform a task with no regard to their aesthetics.
Robots can be autonomous or semi-autonomous and range from humanoids such as Honda's Advanced Step in Innovative Mobility (ASIMO) and TOSY's TOSY Ping Pong Playing Robot (TOPIO) to industrial robots, medical operating robots, patient assist robots, dog therapy robots, collectively programmed swarm robots, UAV drones such as General Atomics MQ-1 Predator, and even microscopic nano robots. By mimicking a lifelike appearance or automating movements, a robot may convey a sense of intelligence or thought of its own. Autonomous things are expected to proliferate in the coming decade, with home robotics and the autonomous car as some of the main drivers.
The branch of technology that deals with the design, construction, operation, and application of robots, as well as computer systems for their control, sensory feedback, and information processing is robotics. These technologies deal with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, or cognition. Many of today's robots are inspired by nature contributing to the field of bio-inspired robotics. These robots have also created a newer branch of robotics: soft robotics.
From the time of ancient civilization there have been many accounts of user-configurable automated devices and even automata resembling animals and humans, designed primarily as entertainment. As mechanical techniques developed through the Industrial age, there appeared more practical applications such as automated machines, remote-control and wireless remote-control.
The term comes from a Czech word, robota, meaning "forced labor"; the word 'robot' was first used to denote a fictional humanoid in a 1920 play R.U.R. (Rossumovi Univerzální Roboti - Rossum's Universal Robots) by the Czech writer, Karel ÄŒapek but it was Karel's brother Josef ÄŒapek who was the word's true inventor. Electronics evolved into the driving force of development with the advent of the first electronic autonomous robots created by William Grey Walter in BristolEngland in 1948, as well as Computer Numerical Control (CNC) machine tools in the late 1940s by John T. Parsons and Frank L. Stulen. The first commercial, digital and programmable robot was built by George Devol in 1954 and was named the Unimate. It was sold to General Motors in 1961 where it was used to lift pieces of hot metal from die casting machines at the Inland Fisher Guide Plant in the West Trenton section of Ewing Township, New Jersey.
MODERN ROBOTS ARE not unlike toddlers: It’s hilarious to watch them fall over, but deep down we know that if we laugh too hard, they might develop a complex and grow up to start World War III. None of humanity’s creations inspires such a confusing mix of awe, admiration, and fear: We want robots to make our lives easier and safer, yet we can’t quite bring ourselves to trust them. We’re crafting them in our own image, yet we are terrified they’ll supplant us.
But that hesitation is no obstacle to the booming field of robotics. Robots have finally grown smart enough and physically capable enough to make their way out of factories and labs to walk and roll and even leap among us. The machines have arrived.
You may be worried a robot is going to steal your job, and we get that. This is capitalism, after all, and automation is inevitable. But you may be more likely to work alongside a robot in the near future than have one replace you. And even better news: You’re more likely to make friends with a robot than have one murder you. Hooray for the future!


The History of Robots
The definition of “robot” has been confusing from the very beginning. The word first appeared in 1921, in Karel Capek’s play R.U.R., or Rossum's Universal Robots. “Robot” comes from the Czech for “forced labor.” These robots were robots more in spirit than form, though. They looked like humans, and instead of being made of metal, they were made of chemical batter. The robots were far more efficient than their human counterparts, and also way more murder-y—they ended up going on a killing spree.
R.U.R. would establish the trope of the Not-to-Be-Trusted Machine (e.g., TerminatorThe Stepford WivesBlade Runner, etc.) that continues to this day—which is not to say pop culture hasn’t embraced friendlier robots. Think Rosie from The Jetsons. (Ornery, sure, but certainly not homicidal.) And it doesn’t get much family-friendlier than Robin Williams as Bicentennial Man.
The real-world definition of “robot” is just as slippery as those fictional depictions. Ask 10 roboticists and you’ll get 10 answers. But they do agree on some general guidelines: A robot is an intelligent, physically embodied machine. A robot can perform tasks autonomously. And a robot can sense and manipulate its environment.
Robo-cabulary
Human-robot interaction
A field of robotics that studies the relationship between people and machines. For example, a self-driving car could see a stop sign and hit the brakes at the last minute, but that would terrify pedestrians and passengers alike. By studying human-robot interaction, roboticists can shape a world in which people and machines get along without breaking each other.
Singularity
The hypothetical point where the machines grow so advanced that humans are forced into a societal and existential crisis.
Multiplicity
The idea that robots and AI won’t supplant humans, but complement them.
Actuator
Typically, a combination of an electric motor and a gearbox. Actuators are what power most robots.
Soft robotics
A field of robotics that foregoes traditional materials and motors in favor of generally softer materials and pumping air or oil to move its parts.
Lidar
Lidar, or light detection and ranging, is a system that blasts a robot’s surroundings with lasers to build a 3-D map. This is pivotal both for self-driving cars and for service robots that need to work with humans without running them down.
Humanoid
The classical sci-fi robot. This is perhaps the most challenging form of robot to engineer, on account of it being both technically difficult and energetically costly to walk and balance on two legs. But humanoids may hold promise in rescue operations, where they’d be able to better navigate an environment designed for humans, like a nuclear reactor.
Think of a simple drone that you pilot around. That’s no robot. But give a drone the power to take off and land on its own and sense objects and suddenly it’s a lot more robot-ish. It’s the intelligence and sensing and autonomy that’s key.
But it wasn’t until the 1960s that a company built something that started meeting those guidelines. That’s when SRI International in Silicon Valley developed Shakey, the first truly mobile and perceptive robot. This tower on wheels was well-named—awkward, slow, twitchy. Equipped with a camera and bump sensors, Shakey could navigate a complex environment. It wasn’t a particularly confident-looking machine, but it was the beginning of the robotic revolution.
Around the time Shakey was trembling about, robot arms were beginning to transform manufacturing. The first among them was Unimate, which welded auto bodies. Today, its descendants rule car factories, performing tedious, dangerous tasks with far more precision and speed than any human could muster. Even though they’re stuck in place, they still very much fit our definition of a robot—they’re intelligent machines that sense and manipulate their environment.
Robots, though, remained largely confined to factories and labs, where they either rolled about or were stuck in place lifting objects. Then, in the mid-1980s Honda started up a humanoid robotics program. It developed P3, which could walk pretty darn good and also wave and shake hands, much to the delight of a roomful of suits. The work would culminate in Asimo, the famed biped, which once tried to take out President Obama with a well-kicked soccer ball. (OK, perhaps it was more innocent than that.)
Today, advanced robots are popping up everywhere. For that you can thank three technologies in particular: sensors, actuators, and AI.
So, sensors. Machines that roll on sidewalks to deliver falafel can only navigate our world thanks in large part to the 2004 Darpa Grand Challenge, in which teams of roboticists cobbled together self-driving cars to race through the desert. Their secret? Lidar, which spews lasers to build a 3-D map of the world. The ensuing private-sector race to develop self-driving cars has dramatically driven down the price of lidar, to the point that engineers can create perceptive robots on the (relative) cheap.
Lidar is often combined with something called machine vision—2-D or 3-D cameras that allow the robot to build an even better picture of its world. You know how Facebook automatically recognizes your mug and tags you in pictures? Same principle with robots. Fancy algorithms allow them to pick out certain landmarks or objects.


Comments

Popular posts from this blog

Periodic table

                                   Periodic table ELEMENTS- Elements are pure from of matter that are made up of one type of atom. ·        DOBEREINER- Grouped all elements in three (triads). ·        NEWLAND- Observed that when elements are arranging in increasing order of their atomic mass. Every eighteen element beginning from any element resemble the first element in its physical and chemical properties. ·        DMITRI MENDLEVE- He is a Russian chemist gave the first periodic table of elements based on his law which states that “The properties of elements are the periodic functions of their atomic mass.”   ·        Modern periodic table was given by HENERY MOSELEY. Periodic table- A tabular form of elements in group and periods highlighting the regular trends in...

ALBERT EINSTEIN

                    ALBERT EINSTEIN Albert Einstein was born on 14 March 1879 in the German city of Ulm, without any indication that he was destined for greatness. On the contrary, his mother thought Albert was a freak. To her, his head seemed much too large. At the age of two-a-half, Einstein still wasn't talking. When he finally did learn to speak, he uttered everything twice. Einstein did not know what to do with other children, and his playmates called him "Brother Boring." So the youngster played by himself much of the time. He especially loved mechanical toys. Looking at his newborn sister, Maja, he is said to have said: "Fine but where are her wheels?" A headmaster once told his father that what Einstein chose as a profession wouldn't matter, because"he'll never make a success at anything." Einstein began learning to play the violin at the age of six, because his mother wanted him to;  he later became a violinist, m...

CA chapter 2 notes class 10

COMPUTER APPLICATION.. CLASS-10... CHPATER -2 INTERNET     SERVICES                                             1)Fill in the blanks.   a.        Google is a good example of a Search Engine .   b.       Search engines broadly consist of three components: The Crawler , The Index , The Search Algorithm .   c.        An E-mail program enables you to send, receive and manage your message through the World Wide Web.   d.        Download means to transfer files from the system you have called to the computer you are using. e.        Upload means to transfer files from your hard disk to the Computer System you have accessed by a modem.   f.   News Group   provide a good way to exchang...